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The flow is examined in the neighbourhood of the trailing edge of slender aero- 
dynamic shapes which terminate in either a cusp or a wedge. The manner in 
which the boundary layer reacts to the rapidly varying pressure field in such 
regions is analyzed using the method of matched asymptotic expansions. The 
case of a wedge is examined in greater detail and a criterion for separation to 
occur is established. 

1. Introduction 
In  this paper we are concerned with the response of a steady laminar boundary 

layer to the rapid variation of pressure which inviscid potential theory predicts 
to occur near the trailing edge of certain slender non-lifting aerodynamic shapes. 
The investigation is part of a programme of study of the structure of the solutions 
of the Navier-Stokes equations in the neighbourhood of the trailing edges of 
aerodynamic shapes when the Reynolds number R of the flow is very large. 
Previous papers (Stewartson 1968,1969; Messiter 1969) have been concerned with 
flat plates at  zero incidence and here we consider bodies with thickness. At a later 
stage it is hoped to combine the earlier work with this study in order to deepen 
our knowledge of trailing edge flows for aerodynamically well designed shapes. 
For the present, however, we confine our attention to boundary-layer theory and 
we establish a criterion for separation to occur and make an estimate of the 
distance from the trailing edge a t  which separation takes place for a class of 
shapes terminating in a cusp or a small non-zero angle. 

The study is believed to be useful for three reasons. First the characteristics 
of a boundary layer, and particularly the point of separation, when subjected to 
a rapidly increasing pressure, have not been fully analyzed. Earlier rational 
studies, for example, Stewartson (1951) and Lighthill (1953) have restricted them- 
selves to linear equations, while the approximate method developed by Stratford 
(1954) and Gadd (1957) has not been mathematically secured particularly with 
respect to separation. The idea behind Stratford’s method, which has been 
successfully applied to a variety of boundary layer flows, is that the slow moving, 
innermost part of the boundary layer reacts more readily to a rapid variation in 
pressure than the outer part. Throughout the region in which significant changes 
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take place in the inner part, the flow in the outer part is assumed to behave as an 
inviscid flow. Approximate solutions in the two parts are patched heuristically. 
In this paper we employ the method of matched asymptotic expansions to the 
trailing edge flows in question and show how Stratford’s method can be set on 
a formal rational basis, which can be regarded as the natural extension of the 
linear theories of Stewartson (1951) and Lighthill. We find that the essential 
assumptions made by Stratford are valid but not all the details of the flow are 
accurately reproduced by the approximate method. 

N .  Riley and K .  Stewartson 

FIGURE 1 

Of the trailing edge flows considered, prime attention is given to the case when 
the body shape near the trailing edge takes the form of a symmetrically disposed 
wedge of small non-zero angle 2na. In  this case the trailing edge is a stagnation 
point of the inviscid irrotational flow field and on the basis of an inviscid flow 
plus a laminar boundary layer the flow field up to the trailing edge can be divided 
into four regions aa indicated in figure 1 (which is not drawn to scale): (a) region I 
in which the flow is irrotational; ( b )  region 11, the classical Prandtl boundary layer 
of thickness O(R-4) between I and the body. Now we find that near the trailing 
edge, and specifically within a distance O(a4) of it, region I1 splits into (c) region 
111, an inner boundary layer of thickness O(a4R-t) embedded in (d )  region IV. 
This is an essentially inviscid region of thickness O(R-4) into which vorticity 
from region I1 is convected. The structure of the solution in these four regions 
is analyzed in detail using perturbation techniques. The response of the flow 
in I11 to the rapidly varying pressure leads to separation taking place before 
the trailing is reached and within a distance O(&) of it. Thus the structure of 
the boundary layer on the basis assumed has been elucidated which is the second 
reason for the present study. 

However, we note that according to the theory of separation, with a prescribed 
pressure gradient, it is accompanied in general by a singularity and there seems 
no reason to doubt its existence here. Such a singularity is also to be expected from 
the experimental evidence of incompressible flows, for separation then invariably 
leads to a break-away of the mainstream from the wall, for which no mathematical 
explanation is forthcoming if the boundary layer hypotheses hold downstream 
of separation. This phenomenon reveals a weakness in the present theory since 
the assumed potential flow outside the boundary layer is incorrect downstream 
of separation and must be distorted to a greater or lesser degree upstream. We 
are inclined to believe that if a: < 1 this distortion is not disastrous in the regions 
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examined in this paper and that its value  as^ a first step towards unravelling the 
flow structure near the trailing edge of a wedge is not thereby greatly diminished. 

This brings us to the third reason for the study, which is to give a qualitative 
criterion for the inhibition of separation. For a flat plate the change in character 
of the boundary layer at  the trailing edge leads to a dramatic fall in the displace- 
ment thickness which in turn induces a weak but favourable pressure gradient 
just upstream. It is to be expected that replacing the plate by a wedge will not 
greatly affect this result so that the possibility arises of the retarding effect of the 
inviscid stagnation point being balanced by the induced accelerating effect of 
the boundary layer leading to the inhibition of separation. The present study is 
then useful for setting up the appropriate upstream boundary conditions for 
the region where these two pressure gradients balance. The study of this new 
region is complicated and is deferred to a later paper but a few comments are in 
order. First a simple argument is set out at the end of this paper to show that 
separation does not occur if a < R-4. Second it is noted that in the case of the flat 
plate the favourable pressure gradient is set up within a distance O(R-3) of the 
trailing edge so that the arguments of this paper are certainly incomplete if 

a# = O(R-#), 

or a = O(R-i), (1.1) 
and it is believed that this is the criterion for the inhibition of separation. 

2. Trailing edge flows 
We consider high Reynolds number, irrotational steady flow over a slender 

aerodynamic shape which terminates in either a cusp or a wedge as shown in 
figure 2. 

FIGURE 2 
13-2 
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For R > 1 where R = U,l/v we initially neglect the viscous terms in the 
Navier-Stokes equations and first consider the inviscid, irrotational flow field 
which is made determinate by applying the Kutta-Joukowski condition at the 
trailing edge. Although in principle the complete irrotational flow field can be 
computed we shall content ourselves with local solutions valid in the neighbour- 
hood of the trailing edge. 

In  a suitable dimensionless form, with E as reference length, we have for the 
wedge the well-known result 

$' N ri+asin8 (a! < l),  (2.1) 
whilst for the cusp Van Dyke (private communication) has observed that 

sin m8 
$ ' N  

where $' is the two-dimensional stream function. These solutions have to be 
corrected for the slip they predict at the solid surface by introducing Prandtl's 
concept of a boundary layer (which has thickness O(R-4) and within which 

We now turn to the boundary layer associated with the inviscid flow past 
slender aerodynamic shapes with particular emphasis on the neighbourhood of 
the trailing edge. Using (2.1) the inviscid slip velocity near the trailing edge of 
a wedge cc sa where s measures distance from the trailing edge. If the trailing 
edge is a cusp (2.2) indicates that the corresponding slip velocity cc 1 + r'sm-1 
where 17'1 < 1. Further 7' > 0 if 1 < m < 3 so that the pressure gradient is 
adverse near s = 0, T' = 0 if nz = $ and the aerofoil has a Joukowsky form, while 
T' < 0 if rn > $ so that the pressure gradient is favourable near s = 0. In order 
to determine the principal properties of the boundary layer near s = 0 the follow- 
ing simplified problem will be studied. Consider a flat plate of unit length in the 
(2, y) plane where yR-4 = y* measures distance normal to the plate, x distance 
downstream from the trailing edge and [ = 1 + x distance downstream from the 
leading edge. If (u, vR-4) are the velocity components in the (5, y) directions the 
boundary layer equations are then 

$1 = O(B-4)). 

(2.5) 

(2.6) 

I u = v = O  at y = O ,  - l < x < O ;  

u=Ul( - l )  if x = - 1 ,  y > O ;  

u + Ui(z) as y + 00. 

a! 
Here Ui(x) = (-z)" or 1 + ~ ( - ~)m--l ,  

where 0 < a < 1. 
As posed this problem differs from that for thin wedge and cusped aerofoils 

only in the definition of Ul(z) and even there through terms which are significant 

nz-1 
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only near the leading edge or which are smooth and uniformly of order u in 
- 1 < x < 0.  They will not affect the character of the boundary layer solution 
in the neighbourhood of the trailing edge. 

Thus the inviscid irrotational flow past slender aerodynamic shapes, some of 
whose properties are given in (2. l), (2.2) and valid in region I of figure 1, induces 
over the majority of the aerofoil a boundary layer whose properties, excluding 
the leading edge region, differ only slightly from that for uniform flow past a flat 
plate. We shall refer to that part of the boundary layer as region I1 and note that 
since dU,/dx + cg as x --f 0 - it must come to an end when 1x1 < 1 in some sense. 
In  order to investigate the nature of its breakdown we introduce the scaling 

X = A X ,  (2.7) 

where A < 1 is a constant to be found and which is explicitly obtained in (2.12) 
below. However, we make the preliminary assumption, found to be consistent 
a posteriori that A % e-"" for all m of interest here which enables us to replace 
UldUl/dx by -a/(  - x ) ~ - ~  in (2.3). Using (2.7) it can readily be shown that the 
pressure and viscous terms in (2.3) are respectively 0(aAm-l), O ( A )  compared 
to the inertia terms so that to first order the flow in this region is effectively 
inviscid. We shall refer to this inviscid region as region IV and we observe that 
matching the solution in this region with the Blasius solution uB = f&(y/@) gives 
u = uB = f&(y) to first order in u in IV. However, although the pressure forces 
do not modify the velocity profile, to first order, in region I V  it can be shown 
that close to the trailing edge there is a thin inner boundary layer in which the 
pressure and viscous terms in (2.3) are comparable with the inertia terms, To 
investigate this inner boundary layer, which we shall designate region I11 we set, 
along with (2.7) 

y = 6Y, 

where 6 -g 1 (see (2.12) below). To find the scaling for u and v appropriate to this 
inner boundary layer region I11 we observe that the inner expansion of the 
solution in IV, written in terms of the variables of region 111, yields 

auB/aY = O(h6) where h =ff;(O) = 0.3321. 

This determines the scale for u, that for v follows from continuity. Writing 

u = A6U(X,  Y ) ,  v = hcPV(X, Y)/A,  (2-9) 

where U = O(l),  V = O(1) and substituting in (2.3) we obtain 

au av ax + ay = 0. 

(2.10) 

(2.11) 

Consequently the inertia, pressure and viscous terms in (2.10) will be comparable 
if we choose 

(2.12) 
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and the equations governing the flow in this inner boundary layer region I11 are 

au av =+ay = 0. J 
(2.13) 

In  addition to the boundary conditions U = V = 0 at Y = 0 the matching re- 
quirements and (2.13) show that 

u- y +- g ( X ) ,  1 as Y+co (2.14) 
v - g ' (X)  y -t W), 1 

where h + gg' = - ( - X)m--2, together with 

U - t  Y as X - t  -m for all Y .  (2.15) 

We note that the arguments associated with the discussion of the inner boundary 
layer leading to (2.13) will be valid as long as the pressure gradient due to the 
irrotational flow is large compared with that due to  the change in character of 
the boundary layer at the trailing edge. The results of Goldburg & Cheng (1961) 
for the flow at the trailing edge of a flat plate indicate that we may expect this 
pressure gradient to  be favourable and to be O(R-)/( - z)*). Thus the arguments 
set out above will only be valid when a( - z ) ~ - ~  9 R-t( - x)-Q which, using 
(2.12) for the region in question, implies 

uRQ(5-3m) $= 1, (2.16) 

which is consistent with (1.1) when m = 1. 
In the next section we discuss the structure of the flow in our various regions 

in more detail for the case m = 1 when the trailing edge geometry is that of a 
wedge. Before leaving this section, however, we observe that equations (2.13) 
imply, since the inner boundary layer now suffers an adverse pressure gradient 
O( l), that separation will take place a t  a finite value of X and thus on the original 
scale at  a distance O [ C Z ~ / ( ~ - ~ ~ ) ]  from the tip. 

3. Solution structure for M = 1 (wedge) 
With the solution in region I given by (2.1) we now consider the solution in 

each of the regions 11-IV discussed in $ 2  and show how these solutions are 
matched taking rn = 1 and choosing 01. Q 1 as the perturbation parameter. 

Region I I  
In  this classical boundary layer region, dominated by the Blasius flow, we note 
that the pressure term in the boundary layer equations may be written as 

dU, a 
Ulz = --{I + 2alog ( -2) + O(a2)). 
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If, in our perturbation solution in 11, we retain only the first term in (3.1) then 
our governing equations may be written as 

with I u = v = O  on y=O, 

u - 1 -a! tn/n as y + 00. 
EQ 

n= 1 

(3.3) 

Making a formal perturbation to the Blasius solution in this region we write 
the stream function $ as 

(3.4) 

where f&j) is the Blasius function and f j  = y/@. Substituting (3 .4 )  into ( 3 . 2 )  
and equating coefficients of powers of shows that f,(fj) satisfies 

00 

P = @fB(m +a z P+Vm + (w2), 
n= 0 

(3.5) 

Although solutions of (3.5) cannot be written in closed form for arbitrary n 
solutions for large n will yield valuable information, since they will lead to the 
terms that are singular as [ + 1. 

(3.6) 

1 f: + 4fBf:- (n+ 1)fA.f; + (n+$)f;;fn = 1, 

f,(O) =fA(O)= 0, fa(00) = - (n+ l ) - l .  

For n 9 1 we write 
(n+ 1 ) fn  = on(% + o ( l ) ,  

so that 

We have ignored, for the moment, the boundary conditions a t  f j  = 0 since the 
solution of (3.7),  which neglects the highest derivatives in ( 3 4 ,  will represent 
an outer solution valid for any fixed f j  > 0 as n -+ 00. The solution is 

= Al(l7i) +Qnf i ( f j ) ,  (3.8) 

where C, is a constant to be found. From (3.6) and (3 .8 )  we see that as f j  --f 0 

cp, -+ l / h  + C,Afj, (3.9) 

and for no choice of the constant Cn can both boundary conditions at  the wall be 
satisfied. To discuss the inner region we write 

(3.10) 
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where the choice of variables in (3.10) is governed by the fact that the viscous 
term in (3.5) must, in the inner region, be comparable with the other terms and 
that this inner solution must match with (3.8). The equation satisfied by F,(c) 
is, from (3.5) and (3.10) for n 9 1 

F:-AcF,+AF, = 1, (3.11) 

with F J O )  = PL(0) = 0. (3.12) 

In  order to achieve a match with the outer solution we must exclude the comple- 
mentary function of (3.11) which is exponentially large when 5 9 1 and we deduce 
that 

where 

FE = a, Ai (A)c) ,  

a, = h-)/A1’(O) = -h-434(4)! 

and Ai is the Airy function. Thus from (3.12) and (3.13) we have 

(3.13) 

(3.14) 

and matching the solution with (3.9) 

n-Wn -+ - h-it39(3)! = G as n + co. (3.15) 

If we now denote the coefficient of a in (3.4), the perturbation to the Blasius 
solution, by +p then we have shown that for f = O(l ) ,  @p may be written as 

where the function A&, f )  has not been determined but, unlike the other two 
terms, remains finite as c -+ 1. 

One of the conditions to be imposed upon the solution in region I V  is that it 
must match asymptotically as a -+ 0 with the solution in region 11. Anticipating 
the matching condition we see, from (3.4) and (3.16) that when 1 - 5  Q 1 (with 
-X 9 1) and f > 0 

@ = fB(Y) - ah&) 1% ( - 4 + a m ? ( y )  ( - 4-* + aA,(y) + O(a2),  (3.17) 

where 6 = - 2n(+)!/h*3)( - +)! and 6 = 1 + z. Similarly the wall shear stress as 
calculated in region I11 must match asymptotically with that in region 11. We 
note that from (3.10) and (3.13) 

where &, an inner solution corresponding to A2, remains finite as [ + 1 so that 
when l - t<  1 (with - X B  1) 

(3.19) 
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The result (3.19) indicates that we can expect a region close to the wall, at  
a distance O(aQ) from the tip, in which the solution cannot be represented by 
a perturbation to the Blasius solution. This is in accord with our findings in Q 2. 

At this stage we remark again that the example being studied is for illustrative 
purposes only. In  flows of practical interest past slender aerodynamic shapes 
the true slip velocity is expected to differ from (2.6) by terms of relative order a 
which will, however, remain smooth as x -+ 0 - . These terms modify (3.16) and 
(3.18) only through A, and and do not affect the principal features of the 
solution in regions I11 and IV which we now discuss. 

Region 111 
For the case of a wedge we see from (2.7), (2.8), (2.9) and (2.12) that the variables 
appropriate to region I11 are given by 

1 x = A-,a%X, q = A-1a3Y7 

u = aiu,  2, = ha-av. 
(3.20) 

On setting a = 0 the governing equations for U ,  V are given by (2.13) with 
m = 1 and the boundary conditions by (2.14) and (2.15). 

Before discussing the solution of (2.13) we note that given U the next term 
in the expansion of u about a = 0 can be readily determined. If  we retain the 
fist two terms in the pressure gradient for this region, derived from (3.1), the 
only modification to (2.13) is that the coefficient of X-1 is replaced by 1 + 3a log a 
whilst (2.14) and (2.15) are unaltered. Thus the expression u = a*U in (3.20) is 

(3.21) 
replaced by 

We turn now to a discussion of the properties of U(X, Y) and in particular the 
asymptotic forms which are used to effect a match with regions I1 and IV. As 
X -+ - co the solution of (2.13) can be written in the form 

where and 7 = Y/( - X ) + .  
ay' a y  u = - ,  y = - -  
ay ax 

(3.22) 

(3.23) 

Of the functions fm(q), fo = +v2 and for rn 2 1 

3$"-72$1= 3, 

37; - yy; - 27f; + 2f2 = p, 1 (3.24) 

We note then that g ( X ) ,  in (2.14), is given as X +- --co by 
W 

g(Y) = -c (-X)+-tmfA(cO). 
m = l  

(3.25) 

(3.26) 
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The linear equations (3.26) can be solved successively without any great diEculty 
bearing in mind that each hm a complementary function fc for which, as q --f co, 

f c  T4exP (T3/9). (3.27) 

From this asymptotic solution for Y we can show that when - X $ 1 , q  9 1 

3 681(-X)-$ 18 
Y3 Y2 

++log Y - g log ( - X)} 8U 
aYN 1--+  

8, C,( -X)-1 - ( - X ) - #  +-+-- -9q- +..., (3.28) 
Y4 Y3 Y4 

where the constants c,, c2 and c3 are known. 
We next consider the solution of (2.13) for finite X as Y --f co. Thus we write 

1 u = Y-g(X)+.iz, 

v = Y g ' ( X )  + h ( X )  + 5, 
(3.29) 

where 161, 151 < 1 and substitute in (2.13). Neglecting products of small terms 
we have, finally, as an equation for 6, = a.ii/aY, 

.izi,,Y-(g'Y+~).iiyy+(g-Y)~=P = 0. (3.30) 

Substituting for h and writing Q, = up we write (3.30) as 

4x = Y-% Y - (X Y1-l qb + 99' Y-l+y - g'4p + 9 Y-l+x, (3.31) 

and we assume that the terms on the right-hand side are small compared with 
the left-hand side for large Y. Thus we write 

4 = 4 0 + ~ 1 + 4 2 + " ' ?  (3.32) 

where #ox = 0. Comparison with (3.28) indicates that 

(b0 = - 3/ Y2. (3.33) 

It is clear that dl = O(Y-3) and thus 

which gives 

and comparison with (3.28) indicates that A,  = 0. Similarly 

6 18gg' 
A x  = - X y 4 - y 4 >  

and, using (3.28), we write the solution of (3.35) as 

6 9g2 lSl0gY c, 
0 2 = - - l o g ( - X ) - ~ + ~ + y a .  Y4 

(3.34) 

(3.35) 

(3.36) 
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We do not continue the solution beyond this stage. Thus we have, as Y + a, 

+ o( Y-51, (3.37) 3 6g(X) 181og Y [610g(-X)+9g2-8,] 
Y2 Y3 Y4 Y4 

$ =---- +--- 

which, as X +  -03, yields (3.28). It may be verified that the terms neglected in 
(3.30) make no contribution to (3.37). It is perhaps also worth pointing out that 
arguments similar in nature to the above show that there is a possible exponential 
behaviour 

a2u - - x -exp[ -21, 
aY2 Y (3.38) 

which is in accord with (3.27) and which has been suppressed. 
To summarize we have, its Y + 03, 

Y = HY2- gY + 3 log Y + 49s"- log ( - X) - 3g/ Y 

Before leaving region I11 we note from (3.22) that as X + - 00 

(Z) = l+(-x)-~~;(o)+O[(-x)-+], 
ay2 y=o 

(3.40) 

and since from (3.24) 

fi(0) = - e-W dr] = - 2?~/3%( - $)! K 
we see with the help of (3.20) that (3.19) and (3.40) match as required. 

the inner boundary layer I11 is embedded. 
We now consider the solution in the effectively inviscid region within which 

Region I V 
We have already seen in 0 2 that to first order region IV  is one of inviscid rota- 
tional flow. The scales appropriate to region IV may be inferred from $ 2  and 

(3.41) 
we write 

as the variables for this region where we have taken g= O(1) on the Prandtl 
boundary layer scale to effect a match with region 11. With the continuity 
equation satisfied we have, substituting (3.41) into (2.13), 

x = A-Sa%.X, y = F and += 'ii; 

The boundary conditions are formulated by requiring that the solution match 
with solutions in adjacent regions. The contributions which regions I, I1 and I11 
make to the asymptotic forms of 'ii; are obtained by writing (2,1), (3.4) and Y of 
I11 in terms of the variables (3.41) and formally letting a -+ 0. Thus with the 
help of (3.17) and (3.39) we see that 

- 3a a 4 = 4 ~ 7 2 -  atHg(X) - -log CL + x{*g2- log ( - X) + 3 log AT} + O[a~loga], 

as F -+ 0, (3.43) 
2h 
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- 3 = H + Q(a log a) H + a H log ( - X) - 2a H log h + @(X, a) + O ( d ) ,  (3.44) 

as 
region I, and 

-+ o, where @(x, a) arises from solutions of higher order than (2.1) in 

- 
@ = fB( P) + CC~X@~&( 7) ( - X)-* - 2(alog a) A,( F) 

-a{A,(T)log( -X)+A3(F)}+O(a2) ,  (3.45) 

as X -+ - 00, where A,( H) is not determined. 
We seek a solution 

~o+at$ : ,+(a loga)g2+ag3+ .... (3.46) 

Substitute in (3.42) and equate the coefficients of powers of a. 

(3.47) 

Matching the inviscid solution go = $o( 7)  with region I1 determines, with the 
help of (3.45), To a8 the Blasius function, thus 

$0 = fI3C (3.48) 
- 

ago a2$, az$,,a$, 
a H a X a H  a P a X  
_ _ _ _ _ _ - -  O(a4) 

- 0, 

- 
or @:F3$1z/T0F1 = 0. (3.49) 

Integrating we deduce from (3.49) that 
- 
$1 = ~l(X)f;3( + 7). (3.50) 

The matching condition (3.43) determines F, as Fl(x) = - g ( x ) / h  and we note that 
this term makes a contribution -aig/h to @(X,a) in (3.44). The match with 
regions I, I1 and I11 is completed by setting rl = 0. 

O(a log a) 
As for 3, we calculate pa as 

- 
$2 = wwm + ram, (3.51) 

and matching with region I11 shows, using (3.43), that P2(z) = 0. Further, 
matching with region I1 gives 

r2(y) = -$A,(H), (3.52) 
- 

which is consistent with (3.44) and (3.45). 

O(a) 
The terms O(a) give the following equation for T3, 

- 
$$ 3XP$OP- - -_ p-+- 3X OPP =X-l-(-  @ l & S  -P1d,m=), (3.53) 

which when rearranged, making use of (3.48), becomes 

(3.54) 
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from which we deduce 
- 1 
+3 = - A,( P) log ( - X) + s2g2f;l( F) +fp3(x)  + r,( P). (3.55) 

As 7 + 0 in (3.55) we have 

(3.56) 

which, using (3.43), matches with region I11 if F3(x)  = 0 and r3 - (3/h)loghP 
as P 3 0. Similarly, as P + 00 equation (3.55) with 4 = 0 gives 

which, from (3.44), matches with region I if F3 N - 2Plogh as p+00. The 
function r',(F) is finally determined by matching with region I1 although, as 
we see from (3.45), this only enables us to express l?,(F) in terms of the un- 
determined A,( 7). 

We do not continue our solution beyond this stage at  which our analysis has 
revealed the detailed structure of the solutions in the various regions into which 
our flow field has been divided. We now consider some of the consequences of the 
foregoing analysis and in particular boundary layer separation. 

4. Separation 
It is now possible to consider the structure of the boundary layer near the 

trailing edge with reference to Stratford's method. The pressure distribution is 
one for which his method should be relevant as it consists of a long interval of 
slow variation followed by a rapid change, leading however to only a small 
increase of pressure. We have seen that the structure of the boundary layer in 
the critical region is as envisaged by Stratford physically, so that the basic ideas 
behind his method are correct. However using his explicit formula for separation 
(Stratford 1954, p. 7) we get for the value xs of x at separation 

( - x ) s  = 0 [a%(log;)4], 

whereas it is clear from the preceding section that ( -x), = O(a9). Stratford's 
method can be interpreted as a Pohlhausen approach to solving (2.13), (2.14) 
and it may be that the quantitative errors we have found can be removed by 
a different choice of profile. One tried here involved using exponential instead 
of algebraic terms and gave ( - x), = 1 .83~3 .  A more satisfactory procedure is to 
use the series (3.22) and, after numerical integration of (3.24), the following 
series for 7 = (aU/aY),=,: 

T = 1-1*8575x-O*7314x2-O-9158x3- 1.512424- ..., 

7% = 1 - 3 . 7 1 5 0 ~  + 1 . 9 8 7 5 ~ ~  + 0.8855y + 0.912324.. . . 

(4.2) 

where x = ( -  X)-3, from which we deduce that 

(4.3) 
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On truncating (4.2) after two, three, four or five terms the following estimates 
for xs are’ obtained 

0.338, 0.456, 0.428, 0.413; (4.4) 

0.269, 0.326, 0-341, 0.347; (4.5) 

similarly from (4.3) we obtain 

it is expected that the sequence (4.4) converges to the true value of xs from above 
whilst (4.5) converges from below. Further it is known that T N (x,-x)* near 
x = xs while 7 2  = (regular function of x) + O(xs - x)%. Surmising that the rate of 
convergence of (4.5) is faster than that of (4.4) in the ratio 8: +we construct a new 
sequence by weighting (4.4), (4.5) with factors 5, 4 and adding. We get 

0.346, 0.361, 0-366, 0.366, 

and infer that separation occurs at  

xs = 0.367 or (--x)$ i 4.50a4. (4.7) 

Thus neither Stratford’s original method nor the simple modification tried 
above gives a satisfactory estimate for separation and there is a case for seeking 
a more reliable approximate method to deal with boundary layers involving 
rapid pressure variations. 

5. The case aRi < 1 
We have shown that, for the case of a wedge, separation of the boundary layer 

will take place at a distance O(a8) from the tip if aR4 B 1. We have also suggested 
in 0 2 that the largest trailing edge angle for which the flow will not separate is 
O(R-4). We shall conclude this paper by showing, quite simply, that for the 
case aR* < 1 the flow is maintained up to the trailing edge. 

To achieve this we use the results obtained by Stewartson (1968, 1969) for 
the flow in the neighbourhood of the trailing edge of a flat plate. Stewartson 
(1969) shows that at  the trailing edge, between the region described by the 
Blasius boundary layer and that described by the Goldstein wake solution, is an 
intermediate region centred on the trailing edge and of scale s3 where 8 = R a  
in which the pressure gradient induced in the inviscid flow field by the boundary 
layer can no longer be neglected. Let (Z, g) be Cartesian co-ordinates on the scale 
$of the intermediate region with origin at the tip, measured normal to the plate 
and 5 downstream. Stewartson then shows that the solution in the intermediate 
region has to be studied on three ‘decks’ whose thicknesses are = O(l) ,  O(s), 
O ( g 2 )  respectively and that finally (Stewartson 1968) the solution is completed 
by solving the Navier-Stokes equations in a region of scale O(e3), An approximate 
solution is obtained for this final inner region. The relevance of Stewartson’s 
work in the present problem is as follows. We note first that for the small angles 
( < O(s2))  under consideration the boundary conditions on the wedge surface 
ij = -n&, 5 < 0 and on the dividing streamline a = 0, Z > 0 may, to first order 
in a, be replaced by the same conditions on jj = 0 for all B. Secondly, in this 
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intermediate region q$' = O(e3) and if E3$* = q$' then (2.1) shows that the 
boundary condition to be satisfied as F = (3 + y2)* + co, B + 0 is +* - F sin 6 -+ 0 
to first order in a, exactly as for a flat plate. Thirdly, the work of Q 3 (see for 
example (3.17)) shows that, for the small angles under consideration, as Z+- co 
for O <  < e the solution approaches, to first order in a, the Blasius solution. 
Similarly as ?? -+ co the solution will merge with the Goldstein wake solution, 
Consequently the problem as posed, to first order in a, is exactly as for the flow 
at the trailing edge of a flat plate and we can take over the work of Stewartson 
for both the intermediate and final inner regions. However, the flat plate solu- 
tion cannot remain uniformly valid at the tip since ultimately the wedge-like 
nature must be apparent. On a scale which is sufficiently small the flow will be 
Stokesian in nature at  the tip and for the flat plate the solution for the stream 
function is 

@(sin #e+ sin ie), (5.1) 

where p is distance measured from the trailing edge in this Stokes region. The 
corresponding solution for the wedge is 

pQ+a(sin #o + sin is), (5.2) 

showing how the non-uniformity is accommodated. 
The conclusion we draw from the above is that in the case of angles so small 

that aR* < 1 the flow will be maintained, without separation, up to the trailing 
edge. 
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